Dover, 2006. — 640 p. — (Dover Books on Mathematics). — ISBN: 048644595X
Intended for use in a beginning one-semester course in differential equations, this text is designed for students of pure and applied mathematics with a working knowledge of algebra, trigonometry, and elementary calculus. Its mathematical rigor is balanced by complete but simple explanations that appeal to...
Mineola, New York, USA: Dover Publications, Inc., 2018. — 416 p. — (Dover Books on Mathematics). — ISBN: 0486828344. Elementary yet rigorous, this concise treatment explores practical numerical methods for solving very general two-point boundary-value problems. The approach is directed toward students with a knowledge of advanced calculus and basic numerical analysis as well as...
Wiley, 2015. — 192 p. — ISBN: 1118721403. A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEs Symmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs)....
Springer International Publishing AG, 2017. — 264 p. — ISBN: 3319627961. This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and...
CRC Press, 2022. — 626 p. — ISBN 9781032072265. Differential Equations: A Linear Algebra Approach follows an innovative approach of inculcating linear algebra and elementary functional analysis in the backdrop of even the simple methods of solving ordinary differential equations. The contents of the book have been made user-friendly through concise useful theoretical...
Springer, 2020. — 388 p. — ISBN 9811516553. This book discusses various novel analytical and numerical methods for solving partial and fractional differential equations. Moreover, it presents selected numerical methods for solving stochastic point kinetic equations in nuclear reactor dynamics by using Euler–Maruyama and strong-order Taylor numerical methods. The book also shows...
CRC Press, 2020. — 481 p. — (Textbooks in Mathematics). — ISBN: 978-0367444099. This new book from one of the most published authors in all of mathematics is an attempt to offer a new, more modern take on the Differential Equations course. The world is changing. Because of the theory of wavelets, Fourier analysis is ever more important and central. And applications are a...
Springer, 2021. — 793 p. — ISBN 978-3-030-72562-4. This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of...
Berlin: de Gruyter, 2018. — 359 p. This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this...
Springer, 2021. — 328 p. — ISBN 978-3-030-82138-8. This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls...
Springer, 2015. — 120 p. — (SpringerBriefs in Mathematics). – ISBN10: 331922574X. This book may be used as reference for graduate students interested in fuzzy differential equations and researchers working in fuzzy sets and systems, dynamical systems, uncertainty analysis, and applications of uncertain dynamical systems. Beginning with a historical overview and introduction to...
Springer, 2021. — 377 p. — ISBN 978-3-030-76042-7. This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes...
Springer, 2023. — 220 p. — (Problem Books in Mathematics). — ISBN 978-3-031-24586-2. This book is aimed to undergraduate STEM majors and to researchers using ordinary differential equations. It covers a wide range of STEM-oriented differential equation problems that can be solved using computational power series methods. Many examples are illustrated with figures and each...
Wiley, 2021. — 515 p. — ISBN 9781119654933. Generalized Ordinary Differential Equations in Abstract Spaces and Applications Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results...
Springer Cham, 2018. — 127 p. — (SpringerBriefs in Mathematics). — ISBN 978-3-319-79038-1. This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. Lots of interesting phenomena arising from the area...
Birkhäuser, 2024. — 644 p. — (Operator Theory: Advances and Applications 293). — ISBN 978-3-662-67872-5. This book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph.The book has two central themes: the trace formula and...
Springer, 2022. — 317 p. — (RSME Springer Series 07). — ISBN 978-3-031-21134-8. Бифуркации в непрерывных кусочно-линейных дифференциальных системах: приложения к низкоразмерным электронным генераторам The book is devoted to the qualitative study of differential equations defined by piecewise linear (PWL) vector fields, mainly continuous, and presenting two or three regions of...
Springer, 2021. — 292 p. — ISBN 978-981-16-0625-0. This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the...
Springer, 2021. — 507 p. — ISBN 978-981-16-0146-0. The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in...
Уважаемые: администратор, модераторы и доверенные пользователи.Друзья, то что ранее предлагал Денис, я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Дифференциальные уравнения в частных производных, который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:1. Википедия (Дифференциальное уравнение): "Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные".2. Википедия (Дифференциальное уравнение в частных производных): "Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод: "Из Категории "Дифференциальные уравнения" -> Дифференциальное уравнение в частных производных".Литература (20 книг) для переноса в новый подраздел Дифференциальные уравнения в частных производных: ...С уважением, благодарностью и благословением,
Уважаемые: администратор, модераторы и доверенные пользователи.Друзья, то что ранее предлагал Денис (от 07.03.2015), я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Обыкновенные дифференциальные уравнения (ОДУ), который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:1. Википедия (Дифференциальное_уравнение): "Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной"2. Википедия (Обыкновенное дифференциальное уравнение): "Обыкнове́нные дифференциа́льные уравне́ния (ОДУ) — это дифференциальные уравнения для функции от одной переменной".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод: "Из Категории "Дифференциальные уравнения" -> Обыкновенное дифференциальное уравнение".Литература (20 книг) для переноса в новый подраздел Обыкновенные дифференциальные уравнения:...С уважением, благодарностью и благословением,
Уважаемые коллеги! Я столкнулся с тем, что литература о дифференциальном исчислении собирается в разделах "Файлы \ Математика \ Высшая математика \ Дифференциальные уравнения" (/files/mathematics/algebra/diffeq/) и "Файлы \ Математика \ Высшая математика \ Математический анализ" (/files/mathematics/algebra/analysis/). Было бы желательно как-то объединить или связать эти разделы, или подчинить раздел "Дифференциальные уравнения" разделу "Математический анализ".
Комментарии
"Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные".2. Википедия (Дифференциальное уравнение в частных производных):
"Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Дифференциальное уравнение в частных производных".Литература (20 книг) для переноса в новый подраздел Дифференциальные уравнения в частных производных:
...С уважением, благодарностью и благословением,
Я благодарен Вам за добавление подраздела Дифференциальные уравнения в частных производных.
С уважением,
"Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной"2. Википедия (Обыкновенное дифференциальное уравнение):
"Обыкнове́нные дифференциа́льные уравне́ния (ОДУ) — это дифференциальные уравнения для функции от одной переменной".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Обыкновенное дифференциальное уравнение".Литература (20 книг) для переноса в новый подраздел Обыкновенные дифференциальные уравнения:...С уважением, благодарностью и благословением,
Я благодарен Вам за добавление подраздела Обыкновенные дифференциальные уравнения.
С уважением,
Я столкнулся с тем, что литература о дифференциальном исчислении собирается в разделах "Файлы \ Математика \ Высшая математика \ Дифференциальные уравнения" (/files/mathematics/algebra/diffeq/) и "Файлы \ Математика \ Высшая математика \ Математический анализ" (/files/mathematics/algebra/analysis/).
Было бы желательно как-то объединить или связать эти разделы, или подчинить раздел "Дифференциальные уравнения" разделу "Математический анализ".
http://mat-an.ru/filippov.php