Вестник СамГУ — Естественнонаучная серия. — 2008. — №6 (65). — 25 с. В статье описана общая схема исследования математических уравнений, основанная на использовании инвариантов и позволяющая упрощать алгебраические уравнения и системы, понижать порядок обыкновенных дифференциальных уравнений (или их интегрировать), а также получать точные решения нелинейных уравнений...
Сборник научных трудов. — М.: Московский физико-технический институт (государственный университет), 2009. — 194 с. Отражены результаты научных исследований, ведущихся в учебных и научных учреждениях России и стран СНГ в области математического и имитационного моделирования. Все результаты касаются симметрий дифференциальных уравнений, как обыкновенных, так и с частными...
М.: Изд-во МГУ, 1984. — 178 с.
В сборнике представлены работы молодых ученых механико-математического факультета МГУ. Основной материал составляют доклады, прочитанные на конференциях. Собранные статьи отражают некоторые направления исследований, проводимых в области дифференциальных уравнений на механико-математическом факультете МГУ в настоящее время: теории обыкновенных...
М.: Физматлит, 2003. — 464 с. — ISBN: 5-9221-0301-6. Книга содержит обзорные и оригинальные статьи ряда российских ученых, активно работающих в области нелинейной математики и ее приложений. Излагаются вопросы теории ветвления и бифуркаций, теории дифференциальных и функционально-дифференциальных уравнений, теории устойчивости и теории некорректных задач, а также другие...
УМН, т. XVIII, вып.5 (113), 1963. Одним из самых замечательных среди многочисленных математических достижений А. II. Колмогорова является его работа 1954 г. по классической механике. Простая и новая идея, комбинация весьма классических и вполне современных методов, решение 200-летних проблем, ясная геометрическая картина и широкие горизонты — таковы достоинства этой работы....
М.: Изд-во Моск. ун-та, 1987. — 123 с. Сборник посвящен актуальным проблемам теории дифференциальных уравнений, теории функций и функционального анализа. В первой части рассматриваются вопросы спектральной теории дифференциальных операторов, качественной теории дифференциальных уравнений, теории разрешимости краевых задач математической физики, во второй - вопросы теории...
Уважаемые: администратор, модераторы и доверенные пользователи.Друзья, то что ранее предлагал Денис, я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Дифференциальные уравнения в частных производных, который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:1. Википедия (Дифференциальное уравнение): "Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные".2. Википедия (Дифференциальное уравнение в частных производных): "Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод: "Из Категории "Дифференциальные уравнения" -> Дифференциальное уравнение в частных производных".Литература (20 книг) для переноса в новый подраздел Дифференциальные уравнения в частных производных: ...С уважением, благодарностью и благословением,
Уважаемые: администратор, модераторы и доверенные пользователи.Друзья, то что ранее предлагал Денис (от 07.03.2015), я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Обыкновенные дифференциальные уравнения (ОДУ), который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:1. Википедия (Дифференциальное_уравнение): "Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной"2. Википедия (Обыкновенное дифференциальное уравнение): "Обыкнове́нные дифференциа́льные уравне́ния (ОДУ) — это дифференциальные уравнения для функции от одной переменной".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод: "Из Категории "Дифференциальные уравнения" -> Обыкновенное дифференциальное уравнение".Литература (20 книг) для переноса в новый подраздел Обыкновенные дифференциальные уравнения:...С уважением, благодарностью и благословением,
Уважаемые коллеги! Я столкнулся с тем, что литература о дифференциальном исчислении собирается в разделах "Файлы \ Математика \ Высшая математика \ Дифференциальные уравнения" (/files/mathematics/algebra/diffeq/) и "Файлы \ Математика \ Высшая математика \ Математический анализ" (/files/mathematics/algebra/analysis/). Было бы желательно как-то объединить или связать эти разделы, или подчинить раздел "Дифференциальные уравнения" разделу "Математический анализ".
Комментарии
"Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные".2. Википедия (Дифференциальное уравнение в частных производных):
"Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Дифференциальное уравнение в частных производных".Литература (20 книг) для переноса в новый подраздел Дифференциальные уравнения в частных производных:
...С уважением, благодарностью и благословением,
Я благодарен Вам за добавление подраздела Дифференциальные уравнения в частных производных.
С уважением,
"Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной"2. Википедия (Обыкновенное дифференциальное уравнение):
"Обыкнове́нные дифференциа́льные уравне́ния (ОДУ) — это дифференциальные уравнения для функции от одной переменной".3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Обыкновенное дифференциальное уравнение".Литература (20 книг) для переноса в новый подраздел Обыкновенные дифференциальные уравнения:...С уважением, благодарностью и благословением,
Я благодарен Вам за добавление подраздела Обыкновенные дифференциальные уравнения.
С уважением,
Я столкнулся с тем, что литература о дифференциальном исчислении собирается в разделах "Файлы \ Математика \ Высшая математика \ Дифференциальные уравнения" (/files/mathematics/algebra/diffeq/) и "Файлы \ Математика \ Высшая математика \ Математический анализ" (/files/mathematics/algebra/analysis/).
Было бы желательно как-то объединить или связать эти разделы, или подчинить раздел "Дифференциальные уравнения" разделу "Математический анализ".
http://mat-an.ru/filippov.php