Зарегистрироваться
Восстановить пароль
FAQ по входу

Györfi L. (ed.) Principles of Nonparametric Learning

  • Файл формата pdf
  • размером 24,05 МБ
  • Добавлен пользователем
  • Описание отредактировано
Györfi L. (ed.) Principles of Nonparametric Learning
Wien: Springer, 2002. — 344 p.
The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.
Pattern Classification and Learning Theory
Nonparametric Regression Estimation
Universal Prediction
Learning-Theoretic Methods in Vector Quantization
Distribution and Density Estimation
Genetic Programming Applied to Model Identification
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация