Зарегистрироваться
Восстановить пароль
FAQ по входу

Jüngel A., Manasevich R., Markowich P.A., Shahgholian H. (eds.) Nonlinear Differential Equation Models

  • Файл формата pdf
  • размером 14,89 МБ
  • Добавлен пользователем
  • Описание отредактировано
Jüngel A., Manasevich R., Markowich P.A., Shahgholian H. (eds.) Nonlinear Differential Equation Models
Wien: Springer, 2004. — 194 p.
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
On the Curvature of the Free Boundary for the Obstacle Problem in Two Dimensions
Nonlinear Free Boundary Problems with Singular Source Terms
Behavior of the Free Boundary Near Contact Points with the Fixed Boundary for Nonlinear Elliptic Equations
Global Solutions of an Obstacle-Problem-Like Equation with Two Phases
Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research
On the Blow-Up Set For U t = (u m ) xx m> 1, with Nonlinear Boundary Conditions
A Phase Plane Analysis of the “Multi-Bubbling” Phenomenon in Some Slightly Supercritical Equations
The Dirichlet Problem for the Porous Medium Equation in Bounded Domains. Asymptotic Behavior
A Note on Deformations of 2D Fluid Motions Using 3D Born-Infeld Equations
Kinetic Models for Chemotaxis and their Drift-Diffusion Limits
Rotating Charge Coupled to the Maxwell Field: Scattering Theory and Adiabatic Limit
On Hyperbolic Variational Inequalities of First Order and Some Applications
Kinetic and Hydrodynamic Models of Nearly Elastic Granular Flows
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация