Зарегистрироваться
Восстановить пароль
FAQ по входу

Hitrik M., Tamarkin D., Tsygan B., Zelditch S. (Eds.) Algebraic and Analytic Microlocal Analysis: AAMA, Evanston, Illinois, USA, 2012 and 2013

  • Файл формата pdf
  • размером 6,85 МБ
  • Добавлен пользователем
  • Описание отредактировано
Hitrik M., Tamarkin D., Tsygan B., Zelditch S. (Eds.) Algebraic and Analytic Microlocal Analysis: AAMA, Evanston, Illinois, USA, 2012 and 2013
Springer, 2018. — 660 p. — (Springer Proceedings in Mathematics & Statistics 269). — ISBN: 978-3-030-01586-2.
This book presents contributions from two workshops in algebraic and analytic microlocal analysis that took place in 2012 and 2013 at Northwestern University. Featured papers expand on mini-courses and talks ranging from foundational material to advanced research-level papers, and new applications in symplectic geometry, mathematical physics, partial differential equations, and complex analysis are discussed in detail. Topics include Procesi bundles and symplectic reflection algebras, microlocal condition for non-displaceability, polarized complex manifolds, nodal sets of Laplace eigenfunctions, geodesics in the space of Kӓhler metrics, and partial Bergman kernels. This volume is a valuable resource for graduate students and researchers in mathematics interested in understanding microlocal analysis and learning about recent research in the area.
Procesi Bundles and Symplectic Reflection Algebras
Three Lectures on Algebraic Microlocal Analysis
Microlocal Condition for Non-displaceability
A Microlocal Category Associated to a Symplectic Manifold
Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality
Probability Measures Associated to Geodesics in the Space of Kähler Metrics
Intersection Bounds for Nodal Sets of Laplace Eigenfunctions
Upper Bounds for Bergman Kernels Associated to Positive Line Bundles with Smooth Hermitian Metrics
Off-Diagonal Decay of Bergman Kernels: On a Question of Zelditch
Two Minicourses on Analytic Microlocal Analysis
A Proof of a Result of L. Boutet de Monvel
Propagation of Analytic Singularities for Short and Long Range Perturbations of the Free Schrödinger Equation
Pointwise Weyl Law for Partial Bergman Kernels
Scattering Resonances as Viscosity Limits
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация