М.: Наука, 2014 . — 408 с . — ISBN: 978-5-02-039082-9.
Многомерная гипергеометрическая теория составляет раздел математики, в котором тесно переплетаются методы анализа, алгебры и геометрии Этот раздел лежит на границе между математикой конструктивной и трансцендентной, гипергеометрическая функция кодируется набором рациональных функций или идеалом в алгебре Вейля, при этом сама функция является, как правило, трансцендентной.
Основное внимание в книге уделено изучению понятия гипергеометричности по Горну и его связи с классом А-гипергеометрических функций, введенных Гельфандом, Зелевинским и Капрановым. Решаются задачи вычисления размерности линейного пространства решений гипергеометрической системы дифференциальных уравнений, нахождения особенностей решений и их монодромии, описания областей сходимости рядов и интегралов гипергеометрического типа.
Важную роль в книге играют алгебраические функции. Для систем алгебраических уравнений даны параметризации дискриминантных множеств и их стратов. Рассмотрена задача вычисления аналитической сложности голоморфных функций двух переменных.
Для научных работников, аспирантов и студентов физико-математических специальностей.