John Wiley & Sons Ltd, 2015. — 272 p.
Covers theoretical and practical aspects related to the behavioral modelling and predistortion of wireless transmitters and power amplifiers. It includes simulation software that enables the users to apply the theory presented in the book. In the first section, the reader is given the general background of nonlinear dynamic systems along with their behavioral modelling from all its aspects. In the second part, a comprehensive compilation of behavioral models formulations and structures is provided including memory polynomial based models, box oriented models such as Hammerstein-based and Wiener-based models, and neural networks-based models. The book will be a valuable resource for design engineers, industrial engineers, applications engineers, postgraduate students, and researchers working on power amplifiers modelling, linearization, and design. Conceptually, behavioral modeling and digital predistortion are intimately related. They are often referred to as forward and reverse modeling, respectively. This book focuses on the behavioral modeling and digital predistortion of wideband power ampli ers and transmitters. It compiles a wide range of topics related to this theme. The book is organized in 10 chapters, which can be organized into three parts. Chapters 1–3 set the ground for the remainder of the book by introducing the key parameters used to model and characterize the nonlinear behavior of wireless transmitters in Chapter 1, classifying and discussing the theory of dynamic nonlinear systems in Chapter 2, and providing a review of model performance evaluations metrics in Chapter 3. The second part of the book, Chapters 4–7, is a thorough review of behavioral models and predistortion functions that encompasses quasi-memoryless models in Chapter 4, memory polynomial based models in Chapter 5, box-oriented models in Chapter 6, and neural networks based models in Chapter 7. These models are introduced and their speci cities discussed. The last part of the book, Chapters 8–10, is application oriented and provides comprehensive and insightful information about the use, in an experimental environment, of the models described earlier in the book. Chapter 8 covers the acquisition of the device-under-test (DUT) input and output data and its processing prior to the model identi cation. Chapter 9 is devoted to baseband digital predistortion and its practical aspects. Chapter 10 concludes the book by exposing recent trends in behavioral modeling and digital predistortion such as joint quadrature impairment compensation and digital predistortion, as well as the predistortion of dual-band and multi-input multi-output (MIMO) transmitters.