Зарегистрироваться
Восстановить пароль
FAQ по входу

Deift P. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

  • Файл формата djvu
  • размером 1,56 МБ
  • Добавлен пользователем
  • Описание отредактировано
Deift P. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
New York: American Mathematical Society, 2000. — 269 p.
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random $n {\times} n$ matrices exhibit universal behavior as $n {\rightarrow} {\infty}$? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация