Boca Raton: CRC Press, 2013. - 345 p. This book introduces SVMs systematically and comprehensively. We place emphasis on the readability and the importance of perception on a sound understanding of SVMs. Prior to systematical and rigorous discourses, concepts are introduced graphically, and the methods and conclusions are proposed by direct inspection or with visual explanation. Particularly, for some important concepts and algorithms we try our best to give clearly geometric interpretations that are not depicted in the literature, such as Crammer-Singer SVM for multiclass classification problems.
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Springer, 2010. — 485 p. This book focuses on the application of support vector machines to pattern classification. Specifically, we discuss the properties of support vector machines that are useful for pattern classification applications, several multiclass models, and variants of support vector machines. To clarify their applicability to real-world problems, we compare the...
Springer, 2015. — 745 p. — ISBN: 3319141414, 9783319141411, 9783319141428 This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as...
Apress, 2017. — 169 p. — ISBN: 978-1-4842-2765-7. Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is...
Packt, 2018. — 442 p. — ISBN: 978-1-78839-990-6 Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick...
Springer, 2008. — 610 p. The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a unified style. In a nutshell, we identify at least...
М.: O’Reilly Media, 2017. — 392 с. Машинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, однако эта область не является прерогативой больших компаний с мощными аналитическими командами. Даже если вы еще новичок в использовании Python, эта книга познакомит вас с практическими способами построения систем машинного обучения. При всем...