Academic Press, 2000. — 403 с. Second Edition ISBN: 012403330X. Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. Phase plane analysis for systems of two linear equations. Use of equations of variation to approximate solutions. Fundamental matrices and Floquet theory for periodic systems. LaSalle invariance theorem. Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory. Appendix on the use of Mathematica for analyzing difference equaitons. Exponential generating functions. Many new examples and exercises.
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Springer-Verlag, 2013. - 596 pages. ISBN10: 3642284744 Real Analysis is a discipline of intensive study in many institutions of higher education, because it contains useful concepts and fundamental results in the study of mathematics and physics, of the technical disciplines and geometry. This book is the first one of its kind that solves mathematical analysis problems with all...
3rd edition. — Springer, 2005. — 568 p. — ISBN: 0387230599
This book integrates both classical and modern treatments of difference equations. It contains the most updated and comprehensive material on stability, Z-transform, discrete control theory, and asymptotic theory, continued fractions and orthogonal polynomials. Yet the presentation is simple enough for the book to be...
Dover, 2001. - 624 Pages. ISBN: 048641454X Outstanding text treats numerical analysis with mathematical rigor, but relatively few theorems and proofs. Oriented toward computer solutions of problems, it stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.
William F. Trench, 2013. — 806 p. Applications Leading to Differential Equations. First Order Equations. Direction Fields for First Order Equations. First Order Equations . Linear First Order Equations. Separable Equations. Existence and Uniqueness of Solutions of Nonlinear Equations. Transformation of Nonlinear Equations into Separable Equations. Exact Equations. Integrating...
William F. Trench, 2013. — 288 p. — Решебник к /file/1318244/ и /file/1318209/ First Order Equations. First Order Equations . Linear First Order Equations. Separable Equations. Existence and Uniqueness of Solutions of Nonlinear Equations. Transformation of Nonlinear Equations into Separable Equations. Exact Equations. Integrating Factors. Numerical Methods . Euler’s Method. The...
Учебное пособие. — Изд. второе, перераб. и дополн. — М.: Наука, Главная редакция физико-математической литературы, 1977. — 440 с. Теория разностных схем численного решения дифференциальных уравнений является одной из основных частей современной вычислительной математики. Книга предназначена для первоначального ознакомления с теорией разностных схем и является учебным пособием...