Springer, 2012, ISBN: 1461436117, 397 pages. This textbook on linear algebra includes the key topics of the subject that most advanced undergraduates need to learn before entering graduate school. All the usual topics, such as complex vector spaces, complex inner products, the Spectral theorem for normal operators, dual spaces, the minimal polynomial, the Jordan canonical form, and the rational canonical form, are covered, along with a chapter on determinants at the end of the book. In addition, there is material throughout the text on linear differential equations and how it integrates with all of the important concepts in linear algebra. This book has several distinguishing features that set it apart from other linear algebra texts. For example: Gaussian elimination is used as the key tool in getting at eigenvalues; it takes an essentially determinant-free approach to linear algebra; and systems of linear differential equations are used as frequent motivation for the reader. Another motivating aspect of the book is the excellent and engaging exercises that abound in this text. This textbook is written for an upper-division undergraduate course on Linear Algebra. The prerequisites for this book are a familiarity with basic matrix algebra and elementary calculus, although any student who is willing to think abstractly should not have too much difficulty in understanding this text.
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Springer, 2014. — 500 p. — ISBN: 8132215982. The book is primarily intended as a textbook on modern algebra for undergraduate mathematics students. It is also useful for those who are interested in supplementary reading at a higher level. The text is designed in such a way that it encourages independent thinking and motivates students towards further study. The book covers all...
Springer, 2014 2015. — 340 p. — 3rd ed. — (Undergraduate Texts in Mathematics). — ISBN: 3319110799, 9783319110790 This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra:...
Springer, 2002. - 232 pages. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of...
Cambridge University Press, 2011. — 208 p. — ISBN: 0521193699. Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same...
3rd edition. — Springer, 2012. — 508 p. — ISBN: 940072635X, 9789400726352. Linear algebra is a living, active branch of mathematics which is central to almost all other areas of mathematics, both pure and applied, as well as to computer science, to the physical, biological, and social sciences, and to engineering. It encompasses an extensive corpus of theoretical results as...
Springer, 2007. — 526 p. This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A...